Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Gondwana Research ; 114:41730.0, 2023.
Article in English | Scopus | ID: covidwho-2242412

ABSTRACT

Emissions of black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) from various anthropogenic activities are often reported, yet cultural practices such as the multi-day Diwali festival and its influences on the emissions of these compounds are often overlooked. Major activities during this festival include burning rows of oil-filled earthen lamps (diyas) and fireworks (bursting of crackers). A comprehensive field investigation was conducted to document the role of Diwali celebrations on the releases of BC and PAHs during the ongoing Covid pandemic. The results show that large-scale releases of BC and PAHs were observed on the first day of Diwali compared to the remaining four days. BC and PM2.5 mass concentrations throughout the monitoring period ranged from 3.24 to 27.64 µg m−3 and 83.33 to 288.13 µg m−3, respectively. The source apportionment was performed based on the calculated backward trajectories. The results show that the contribution of fossil fuel emission at Adityapur (ADP), Sakchi (SAK), and Gamharia (GMA) was approximately 36.1 %, 34.4 %, and 55.56 %, while biomass burning contribution was approx. 56.9 %, 59.9 %, 41.67 %, respectively. The result showed that fossil fuel emissions were lower compared to biomass combustion during Diwali. Simultaneously, PAHs diagnostic ratio showed that vehicular discharge and coal burning significantly contributed to PAHs at these study sites. © 2022 The Author(s)

2.
2021 ASEE Virtual Annual Conference, ASEE 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1696100

ABSTRACT

The Introduction to engineering (EGGN-100) is a project-based course offered every fall semester to first-year students with undecided engineering majors at California State University, Fullerton (CSUF). The primary objective of this course is to provide project-based learning (PBL) and introduce these students to major projects in Civil, Mechanical, Electrical, and Computer Engineering projects so that they can make an informed decision about their major. The PBL is an active learning method that aims to engage students in acquiring knowledge and skills through real-world experiences and well-planned project activities in engineering disciplines. The course comprises four team-based unique projects related to Civil, Mechanical, Electrical, and Computer Engineering. The project involves using a variety of engineering tools like AutoCAD, Multisim, and Arduino platforms. For the first time, due to the COVID-19 pandemic, the hands-on project-based EGGN-100 course was offered virtually. In this research, we document the learning experiences of students who attended EGGN-100 in a traditional face-to-face mode of instruction and students who participated in the same course in a virtual instruction mode. Surveys conducted during seemingly different modes of instruction show varying levels of satisfaction among students. Of the students who attended the course in traditional and instructional instruction mode, 69% and 90% responded that discipline-specific projects enabled them to make an informed decision, and PBL helped them choose their preferred major. Even the percentage of students who believed the PBL helped them make an informed decision about their major, they like to do more hands-on projects and prefer to attend the classes on campus. Students rated higher satisfaction in virtual instructional mode primarily due to the availability of video lectures, self-paced learning, and readily accessible project simulations. Learning by doing would have bought out the challenges and minor nuances of designing and executing an engineering project. Learning by watching is surficial and not necessarily exposes students to minor details that are critical. As such, the significance of this study is that maybe, after all, not all courses can be taught in a virtual environment, and some courses may be strictly taught in a traditional, hands-on instruction mode. We also study the socio-psychological impact of traditional and virtual learning experiences and report the remedies to cope with stress and loneliness in the online learning environment. © American Society for Engineering Education, 2021

SELECTION OF CITATIONS
SEARCH DETAIL